RC - цепь. Резисторно - конденсаторная схема

31.01.2023 Windows

) и сегодня мы рассмотрим еще один основополагающий элемент – а именно конденсатор . Также в этой статье мы рассмотрим дифференцирующую и интегрирующую RC цепь.

Упрощенно можно сказать, что конденсатор – это резистор, но не обычный, а зависящий от частоты. И если в резисторе ток пропорционален напряжению, то в конденсаторе ток пропорционален не просто напряжению, а скорости его изменения. Конденсаторы характеризуются такой физической величиной как емкость, которая измеряется в Фарадах. Правда 1 Фарад – это чертовски большая емкость, обычно емкости измеряются в нанофарадах(нФ), микрофарадах(мкФ), пикофарадах(пФ) итп.

Как и в статье про резисторы, давайте сначала рассмотрим параллельное и последовательное соединения конденсаторов . И если опять сравнивать соединения конденсаторов с соединениями резисторов, то тут все в точности да наоборот)

Общая емкость в случае параллельного соединения конденсаторов будет равна .

Общая емкость в случае последовательного соединения конденсаторов будет такой:

С соединениями конденсаторов между собой, в принципе, все понятно, особо нечего пояснять, так что двигаемся дальше 😉

Если записать дифференциальное уравнение, связывающее ток и напряжение в этой схеме, а затем его решить, то получим выражение, в соответствии с которым происходит заряд и разряд конденсатора. Не буду тут нагружать лишней математикой, просто посмотрим на конечный результат:

То есть разряд и заряд конденсатора происходит по экспоненциальному закону, вот смотрите на графики:

Как видите, тут отдельно отмечено значение времени τ. Запомните обязательно эту величину – это постоянная времени RC цепи и равна она: τ = R*C. На графиках, в принципе, обозначено на сколько заряжается/разряжается конденсатор за это время, так что не будем на этом еще раз останавливаться. Есть, кстати, полезное практическое правило – за время, равное пяти постоянным времени RC цепи, конденсатор заряжается или разряжается на 99%, ну то есть можно считать, что полностью)

Что же все это значит и в чем фишка конденсаторов?

А все просто, дело в том, что если на конденсатор подать постоянное напряжение, то он просто зарядится и все, а вот если приложенное напряжение будет переменным, тут то все и начнется. Конденсатор будет то разряжаться, то заряжаться, соответственно в цепи будет бегать ток. А в итоге мы получаем важный вывод – через конденсатор легко протекает переменный ток, а вот постоянный не может. Поэтому одно из самых важных предназначений конденсатора – разделить постоянную и переменную составляющие тока в цепи.

С этим разобрались, а теперь расскажу про дифференцирующие и интегрирующие RC цепи.

Дифференцирующая RC цепь.

Дифференцирующую цепочку еще называют ФВЧ – фильтром высоких частот, ее схема представлена ниже:

Как следует из названия, да, собственно, это видно и по схеме – RC-цепь не пропускает постоянную составляющую, а переменная преспокойно себе проходит через конденсатор на выход. Опять же название намекает, что на выходе мы будем получать дифференциал входной функции. Давайте попробуем подать на вход дифференцирующей цепи прямоугольный сигнал и посмотрим, что будет на выходе:

Когда на входе напряжение не меняется – на выходе ноль, так как дифференциал есть не что иное, как скорость изменения функции. Во время скачков напряжения на входе производная велика и на выходе мы наблюдаем всплески. Все логично 😉

А что же нам подать на вход данной RC цепи , если мы хотим получить на выходе прямоугольные импульсы? Правильно – пилообразное напряжение. Так как пила состоит из линейных участков, каждый из которых на выходе даст нам постоянный уровень, соответствующий скорости изменения напряжения, то в совокупности на выходе дифференцирующей RC цепочки мы получим прямоугольные импульсы.

Интегрирующая RC цепь.

Теперь пришло время интегрирующей цепочки. Также ее называют фильтром низких частот. По аналогии несложно догадаться, что интегрирующая цепь пропускает постоянную составляющую, а переменная уходит через конденсатор и не проходит на выход. Схема имеет следующий вид:

Если немножко вспомнить математику и записать выражения для напряжений и токов, то окажется что напряжение на выходе представляет собой интеграл входного напряжения. Из-за этого цепь и получила свое название)

Итак, мы рассмотрели очень важные, хоть и на первый взгляд, несложные схемки. Важно сразу понять, как все это работает и зачем все это вообще надо, чтобы впоследствии при решении конкретных задач сразу видеть подходящее схемотехническое решение. В общем, до скорой встречи в следующих статьях, если возникли какие-либо вопросы, обязательно спрашивайте 😉

Расчеты напряжения и тока в RC и L/R цепях

Существует простой способ расчета любой величины реактивной цепи постоянного тока в любой момент времени. Первый шаг этого способа заключается в определении начальных и конечных значений тех величин, против изменения которых выступает конденсатор или катушка индуктивности (которые они пытаются держать на постоянном уровне, независимо от реактивной составляющей). Для конденсаторов такой величиной будет напряжение, а для катушек индуктивности - ток. Начальное значение - это такое значение, которое было до момента замыкания (размыкания) контактов выключателя, и которое реактивный компонент пытается удерживать на постоянном уровне после замыкания (размыкания) контактов. Конечное значение - это значение, которое устанавливается по истечении неопределенно длительного периода времени. Оно может быть определено путем анализа емкостной цепи, когда конденсатор выступает в качестве обрыва цепи, и индуктивной цепи, когда катушка индуктивности выступает в роли короткозамкнутой перемычки, потому что именно так ведут себя эти элементы при достижении "полной зарядки" через неопределенно длительный промежуток времени.

Следующим шагом является вычисление постоянной времени цепи. Постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. В последовательной RC- цепи , постоянная времени равна общему сопротивлению (в Омах) умноженному на общую емкость (в Фарадах) . В последовательной L/R -цепи она равно общей индуктивности (в Генри) деленной на общее сопротивление (в Омах) . В обоих случаях постоянная времени выражается в секундах и обозначается греческой буквой "тау" (τ):

Увеличение и уменьшение значений тока и напряжения в переходных процессах, как уже отмечалось ранее , носит асимптотический характер . А это значит, что они начинают быстро изменяться в начальный момент времени, и практически не изменяются в последующем. На графике данные изменения отображаются в виде экспоненциальных кривых.

Как уже было сказано выше, постоянная времени представляет собой промежуток времени, в течение которого величина напряжения или тока в переходном процессе изменится примерно на 63% от начального до конечного значения. Каждая последующая постоянная времени приближает эти величины к конечному значению еще примерно на 63%. Математическая формула для определения точного процента довольно проста:

Буква e здесь - иррациональная константа, равная приблизительно 2,718281 8 . За время τ, процент изменения от начального до конечного значения составит:

За время 2τ, процент изменения от начального до конечного значения составит:

За время 10τ, процент изменения составит:

Для расчета напряжений и токов в реактивных цепях эту формулу можно сделать более универсальной:


Давайте проанализируем повышение напряжения в RC-цепи, показанной в первой статье этого раздела :


Обратите внимание, мы выбрали для анализа напряжение, так как именно эту величину конденсатор пытается поддерживать на постоянном уровне. Зная сопротивление резистора (10 кОм) и емкость конденсатора (100 мкФ) мы можем рассчитать постоянную времени данной цепи:

Так как в момент замыкания контактов выключателя напряжение на конденсаторе равно 0 вольт, то именно это значение мы и будем использовать в качестве начального. Конечным значением конечно же будет напряжение источника питания (15 Вольт). С учетом всех этих цифр наше уравнение примет следующий вид:


Таким образом, через 7,25 секунд (к примеру) после подачи напряжения в схему через замкнутые контакты выключателя , напряжение на конденсаторе увеличится на :

Из этих расчетов можно сделать следующий вывод: если начальное напряжение конденсатора составляло 0 вольт, то через 7,25 секунд после замыкания контактов выключателя оно будет равно 14,989 вольт.

При помощи этой же формулы можно рассчитать и ток через конденсатор. Поскольку разряженный конденсатор первоначально действует как короткозамкнутая перемычка, ток через него будет максимальным. Рассчитать этот ток можно поделив напряжение источника питания (15 вольт) на единственное сопротивление (10 кОм):

Известно также, что конечный ток будет равен нулю , так как конденсатор в конечном итоге ведет себя как разомкнутая цепь. Теперь мы можем подставить эти значения в нашу универсальную формулу для расчета величины тока через 7,25 секунд после замыкания контактов выключателя:

Обратите внимание, что полученное значение является отрицательным , а не положительным! Это говорит об уменьшении тока с течением времени . Так как начальное значение тока составляет 1,5 мА, то его уменьшение на 1,4989 мА за 7,25 секунд даст в конечном итоге 0,001065 мА (1,065 мкА ).

Это же значение можно получить при помощи закона Ома, отняв напряжение конденсатора (14,989 вольт) от напряжения источника питания (15 вольт) и поделив полученное значение на сопротивление (10кОм):

Рассмотренная выше универсальная формула хорошо подходит и для анализа L/R цепи. Давайте применим ее к цепи, рассмотренной во второй статье данного раздела :

При индуктивности 1 Генри и последовательном сопротивлении 1 Ом постоянная времени будет равна 1 секунде:

Поскольку катушка индуктивности в данной цепи выступает против изменения тока, именно эту величину мы и выберем для анализа. Начальным значением здесь выступит величина тока через катушку индуктивности в момент замыкания контактов выключателя. Она будет равна нулю. В качестве конечного значения мы возьмем величину тока, которая установится в катушке индуктивности по прошествии неопределенно длительного промежутка времени (максимальная величина). Рассчитать ее можно поделив напряжение источника питания на последовательное сопротивление: 15 В/1 Ом = 15 А.

Если мы хотим определить величину тока через 3,5 секунды после замыкания контактов выключателя, то формула примет следующий вид:

Учитывая тот факт, что начальный ток через катушку индуктивности равнялся нулю, через 3,5 секунды с момента замыкания контактов выключателя его величина составит 14,547 ампер.

Расчет напряжений в индуктивной цепи осуществляется при помощи закона Ома и начинается с резисторов, а заканчивается катушкой индуктивности. При наличии в нашем примере только одного резистора (имеющего значение 1 Ом ), произвести эти расчеты довольно легко :

Отняв полученное значение от напряжения источника питания (15 В), мы получим напряжение, которое будет на катушке индуктивности через 3,5 секунды после замыкания контактов выключателя:

Интегрирующая цепь - RC цепь, в которой напряжение снимается с конденсатора C и соблюдается соотношение t ц >>t и.

Назначение интегрирующих цепей.

Интегрирующая цепь предназначена для формирования импульсов большой длительности. Т.е. для удлинения или расширения импульсов, преобразования импульсов по интегральному закону, получения линейно изменяющегося напряжения. Отсюда другое название интегрирующей цепи - удлиняющая цепь.

Классификация интегрирующих цепей.

По элементной базе интегрирующие цепи классифицируются следующим образом:

· интегрирующие RC цепи на операционном усилителе.

В данном разделе будут рассматриваться только RC интегрирующие цепи.

Условное обозначение интегрирующих цепей:

Принцип действия RC интегрирующих цепей

Принцип действия RC интегрирующих цепей основан на заряде и разряде конденсатора.

При этом напряжение на выходе такой цепи изменяется по закону

Наиболее оптимальное соотношение длительности импульса и постоянной времени цепи: t ц 10t и, т.е. t и /t ц <0,1.

Анализ данного выражения показывает, что U 2 =0, если U 1 =const, т.е. если скорость изменения dU 1 /dt=0. Если U 2 =const и не равно нулю, то напряжение на входе цепи U 1 линейно изменяется.

Схема RC интегрирующей цепи имеет следующий вид:


Работа схемы рассмотрена выше.

Применение RC интегрирующей цепи.

RC интегрирующие цепи применяются для

· селекции импульсов по длительности и сравнения импульсных сигналов, в устройствах формирования линейно изменяющихся сигналов;

· для получения линейно изменяющегося напряжения транзисторного ключа;

· для расширения импульсов;

· осуществления фильтрации переменной составляющей входного напряжения;

· для выполнения операции математического интегрирования.

Интегрирующая RC цепь так же не лишена недостатков, присущих и дифференцирующим цепям.


Улучшить интегрирующие свойства RC интегрирующих цепей можно при использовании операционного усилителя. Такое устройство получило название интегратора. Схему интегратора можно представить в следующем виде.

Работа схемы подробно рассматривалась в разделе аналоговые устройства данной дисциплины.

Таким образом, видно, что выходное напряжение пропорционально интегралу входного напряжения. Ошибка в интеграторе в К раз меньше чем в RC цепи (где К - коэффициент усиления операционного усилителя).

Интересен случай, когда на интегрирующую цепь подаётся последовательность импульсов. При этом возможно два случая:

1.Когда постоянная разряда конденсатора меньше периода следования импульсов, поступающих на вход цепи, т.е. Т п >t разряда. В этом случае конденсатор успевает полностью разрядиться до прихода на вход схемы очередного импульса. И последующий импульс снова заряжает конденсатор от нулевого значения до максимального.


2. Когда постоянная разряда конденсатора больше периода следования импульсов, поступающих на вход цепи, т.е. Т п

Рассмотрим электрическую цепь из резистора сопротивлением R и конденсатора ёмкостью C , представленную на рисунке.

Элементы R и C соединены последовательно, значит, ток в их цепи можно выразить, исходя из производной напряжения заряда конденсатора dQ/dt = C(dU/dt) и закона Ома U/R . Напряжение на выводах резистора обозначим U R .
Тогда будет иметь место равенство:

Проинтегрируем последнее выражение . Интеграл левой части уравнения будет равен U out + Const . Перенесём постоянную составляющую Const в правую часть с тем же знаком.
В правой части постоянную времени RC вынесем за знак интеграла:

В итоге получилось, что выходное напряжение U out прямо-пропорционально интегралу напряжения на выводах резистора, следовательно, и входному току I in .
Постоянная составляющая Const не зависит от номиналов элементов цепи.

Чтобы обеспечить прямую пропорциональную зависимость выходного напряжения U out от интеграла входного U in , необходима пропорциональность входного напряжения от входного тока.

Нелинейное соотношение U in /I in во входной цепи вызвано тем, что заряд и разряд конденсатора происходит по экспоненте e -t/τ , которая наиболее нелинейна при t/τ ≥ 1, то есть, когда значение t соизмеримо или больше τ .
Здесь t - время заряда или разряда конденсатора в пределах периода.
τ = RC - постоянная времени - произведение величин R и C .
Если взять номиналы RC цепи, когда τ будет значительно больше t , тогда начальный участок экспоненты для короткого периода (относительно τ ) может быть достаточно линейным, что обеспечит необходимую пропорциональность между входным напряжением и током.

Для простой цепи RC постоянную времени обычно берут на 1-2 порядка больше периода переменного входного сигнала, тогда основная и значительная часть входного напряжения будет падать на выводах резистора, обеспечивая в достаточной степени линейную зависимость U in /I in ≈ R .
В таком случае выходное напряжение U out будет с допустимой погрешностью пропорционально интегралу входного U in .
Чем больше величины номиналов RC , тем меньше переменная составляющая на выходе, тем более точной будет кривая функции.

В большинстве случаев, переменная составляющая интеграла не требуется при использовании таких цепей, нужна только постоянная Const , тогда номиналы RC можно выбирать по возможности большими, но с учётом входного сопротивления следующего каскада.

В качестве примера, сигнал с генератора - положительный меандр 1V периодом 2 mS подадим на вход простой интегрирующей цепи RC с номиналами:
R = 10 kOhm, С = 1 uF. Тогда τ = RC = 10 mS.

В данном случае постоянная времени лишь в пять раз больше времени периода, но визуально интегрирование прослеживается в достаточной степени точно.
График показывает, что выходное напряжение на уровне постоянной составляющей 0.5в будет треугольной формы, потому как участки, не меняющиеся во времени, для интеграла будут константой (обозначим её a ), а интеграл константы будет линейной функцией. ∫adx = ax + Const . Величина константы a определит тангенса угла наклона линейной функции.

Проинтегрируем синусоиду, получим косинус с обратным знаком ∫sinxdx = -cosx + Const .
В данном случае постоянная составляющая Const = 0.

Если подать на вход сигнал треугольной формы, на выходе будет синусоидальное напряжение.
Интеграл линейного участка функции - парабола. В простейшем варианте ∫xdx = x 2 /2 + Const .
Знак множителя определит направление параболы.

Недостаток простейшей цепочки в том, что переменная составляющая на выходе получается очень маленькой относительно входного напряжения.

Рассмотрим в качестве интегратора Операционный Усилитель (ОУ) по схеме, показанной на рисунке.

С учётом бесконечно большого сопротивления ОУ и правила Кирхгофа здесь будет справедливо равенство:

I in = I R = U in /R = - I C .

Напряжение на входах идеального ОУ здесь равно нулю, тогда на выводах конденсатора U C = U out = - U in .
Следовательно, U out определится, исходя из тока общей цепи.

При номиналах элементов RC , когда τ = 1 Sec, выходное переменное напряжение будет равно по значению интегралу входного. Но, противоположно по знаку. Идеальный интегратор-инвертор при идеальных элементах схемы.

Дифференцирующая цепь RC

Рассмотрим дифференциатор с применением Операционного Усилителя.

Идеальный ОУ здесь обеспечит равенство токов I R = - I C по правилу Кирхгофа.
Напряжение на входах ОУ равно нулю, следовательно, выходное напряжение U out = U R = - U in = - U C .
Исходя из производной заряда конденсатора, закона Ома и равенства значений токов в конденсаторе и резисторе, запишем выражение:

U out = RI R = - RI C = - RC(dU C /dt) = - RC(dU in /dt)

Отсюда видим, что выходное напряжение U out пропорционально производной заряда конденсатора dU in /dt , как скорости изменения входного напряжения.

При величине постоянной времени RC , равной единице, выходное напряжение будет равно по значению производной входного напряжения, но противоположно по знаку. Следовательно, рассмотренная схема дифференцирует и инвертирует входной сигнал.

Производная константы равна нулю, поэтому постоянная составляющая при дифференцировании на выходе будет отсутствовать.

В качестве примера, подадим на вход дифференциатора сигнал треугольной формы. На выходе получим прямоугольный сигнал.
Производная линейного участка функции будет константой, знак и величина которой определится наклоном линейной функции.

Для простейшей дифференцирующей цепочки RC из двух элементов используем пропорциональную зависимость выходного напряжения от производной напряжения на выводах конденсатора.

U out = RI R = RI C = RC(dU C /dt)

Если взять номиналы элементов RC, чтобы постоянная времени была на 1-2 порядка меньше длины периода, тогда отношение приращения входного напряжения к приращению времени в пределах периода может определять скорость изменения входного напряжения в определённой степени точно. В идеале это приращение должно стремиться к нулю. В таком случае основная часть входного напряжения будет падать на выводах конденсатора, а выходное будет составлять незначительную часть от входного, поэтому для вычислений производной такие схемы практически не используются.

Наиболее часто дифференцирующие и интегрирующие цепи RC применяют для изменения длины импульса в логических и цифровых устройствах.
В таких случаях номиналы RC рассчитывают по экспоненте e -t/ RC исходя из длины импульса в периоде и требуемых изменений.
Например, ниже на рисунке показано, что длина импульса T i на выходе интегрирующей цепочки увеличится на время 3τ . Это время разряда конденсатора до 5% амплитудного значения.

На выходе дифференцирующей цепи амплитудное напряжение после подачи импульса появляется мгновенно, так как на выводах разряженного конденсатора оно равно нулю.
Далее следует процесс заряда и напряжение на выводах резистора убывает. За время 3τ оно уменьшится до 5% амплитудного значения.

Здесь 5% - величина показательная. В практических расчётах этот порог определится входными параметрами применяемых логических элементов.

Замечания и предложения принимаются и приветствуются!

Мы рассмотрели одну из разновидностей генераторов с применением колебательного контура. Такие генераторы применяются в основном лишь на высоких частотах, а вот доля генерации более низких частот применение LC генератора может быть затруднительным. Почему? Давайте вспомним формулу: частота KC-генератора рассчитывается по формуле

То есть: для того чтобы уменьшить частоту генерации необходимо увеличить емкость задающего конденсатора и индуктивность дросселя и то, конечно, повлечет увеличение размеров.
Поэтому для генерации относительно низких частот применяются RC-генераторы
принцип работы которых мы и рассмотрим.

Схема самого простого RC-генератора (её еще называют схема с трехфазной фазирующей цепочкой), показана на рисунке:

По схеме видно, что это всего-навсего усилитель. Причем он охвачен положительной обратной связью (ПОС): вход его соединен с выходом и поэтому он постоянно находится в самовозбуждении. А частотой RC-генератора управляет так называемая,фазовращающая цепочка, которая состоит из элементов С1R1, C2R2, C3R3.
С помощью одной цепочки из резистора и конденсатора можно получить сдвиг фаз не более чем на 90º. Реально же сдвиг получается близким к 60º. Поэтому для получения сдвига фазы на 180º приходится ставить три цепочки. С выхода последней RC-цепи сигнал подается на базу транзистора.

Работа начинается в момент включения источника питания. Возникающий при этом импульс коллекторного тока содержит широкий и непрерывный спектр частот, в котором обязательно будет и необходимая частота генерации. При этом колебания частоты, на которую настроена фазовращающая цепь, станут незатухающими. Частота колебаний определяется по формуле:

При этом должно соблюдаться условие:

R1=R2=R3=R
C1=C2=C3=C

Такие генераторы способны работать только на фиксированной частоте.

Кроме использования фазовращающей цепи есть еще один, более распространенный вариант. Генератор так-же построен на транзисторном усилителе, но вместо фазовращающей цепочки применен так называемый мост Вина- Робинсона (Фамилия Вин пишется с одной "Н"!!). Вот так он выглядит:


Левая часть схемы- пассивный полосовой RC-фильтр, в точке А снимается выходное напряжение.
Правая часть- как частотно-независимый делитель.
Принято считать, что R1=R2=R, C1=C2=C. Тогда резонансная частота будет определяться следующим выражением:


При этом модуль коэффициента усиления максимален и равен 1/3, а фазовый сдвиг нулевой. Если коэффициент передачи делителя равен коэффициенту передачи полосового фильтра, то на резонансной частоте напряжение между точками А и В будет равно нулю, а ФЧХ на резонансной частоте делает скачок от -90º до +90º. Вообще же должно выполнятся условие:

R3=2R4

Но только вот одна проблема: все это можно рассматривать лишь для идеальных условий. Реально-же все не так уж просто: малейшее отклонение от условия R3=2R4 приведет либо к срыву генерации или к насыщению усилителя. Чтобы было более понятно, давайте подключим мост Вина к операционному усилителю:


Вообще же именно так использовать эту схему не получится, поскольку в любом случае будет разброс параметров моста. Поэтому вместо резистора R4 вводят какое-либо нелинейное или управляемое сопротивление.
К примеру нелинейный резистор: управляемое сопротивление с помощью транзисторов. Или можно еще заменить резистор R4 микромощной лампой накаливания, динамическое сопротивление которой с ростом амплитуды тока увеличивается. Нить накаливания обладает достаточно большой тепловой инерцией, и на частотах несколько сотен герц уже практически не влияет на работу схемы в пределах одного периода.

Генераторы с мостом Вина обладают одним хорошим свойством: если R1 и R2 заменить переменным,(но только сдвоенным), то можно будет регулировать в некоторых пределах частоту генерации.
Можно и емкости С1 и С2 разбить на секции, тогда можно будет переключать диапазоны, а сдвоенным переменным резистором R1R2 плавно регулировать частоту в диапазонах.

Почти практическая схема RC-генератора с мостом Вина на рисунке ниже:



Здесь: переключателем SA1 можно переключать диапазон, а сдвоенным резистором R1 можно регулировать частоту. Усилитель DA2 служит для согласования генератора с нагрузкой.